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sgn TI(A — KP) = (—1)* " sgn R(%),

the product extending over all primary K of degree a — v.
Lemma 3. If H runs through the primary polynomials of degree <v,

sgn I (HQ — KP) = (—1)» T Min @) oo 11 R(Iﬂ)
HK " P
7. A paper containing a detailed account of the above results, as well
as a number of generalizations, has been offered to the American Journal
of Mathematics.
* NATIONAL RESEARCH FELLOW.
1 Cf. Dedekind, R., J. fir. Math., 54 (1857), pp. 1-26.
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1. Introduction.—We shall give here an outline of a study of the num-
bers m,; appearing in a formula for the number of ways of coloring a graph.
The details will be given in several papers. The definitions and results in a
paper on Non-separable and Planar Graphs will be made use of.

2. The Number of Ways of Coloring a Graph.—Suppose we assign to
each vertex of a graph a color in such a way that each pair of vertices joined
by an arc are of different colors. (A graph containing a 1-circuit cannot
be colored therefore.) We obtain thereby a permissible coloring of the
graph. Given a graph G, let m,; be the number of subgraphs of rank ¢ and
nullity j. Then the number of ways of coloring G in X colors is

PO =N X (=) my = Zom N
1 J % -

if G contains v vertices. This result, first found by Birkhoff,? is proved by
a simple logical expansion.’
We note that, if G contains E arcs,

myg +mi_y,, + ... + m.;,- = <E>

1

Let G’ be formed from G by dropping out the arc ab. Let m;;(a X b) be
the number of subgraphs of rank 7, nullity j, of G’ in which a and b are in
different connected pieces. Put
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mi@Xb) =2 (=1t mj (@aXb).
J

Then
m; = m; (@ X b) — m;_y (a X b).

Another interesting recursion formula is as follows: m;; for G equals the
sum of the m;’s for all the subgraphs of G formed by dropping out a single
arc, divided by ¢ + j,if ¢ 4+ j < E. The first recursion formula can be
extended, and gives the following results:

Let us arrange the arcs of G in a definite order: «,8,7,...,. Given any
circuit, we form the corresponding broken circuit by dropping out the last
arc of the circuit. Thus, if &,8,7 form a circuit, a,8 is a broken circuit.

THEOREM 1. (—1)' m; is the number of ways of picking out i arcs from
G so that not all the arcs of any broken circuit are removed.

The coefficient of A" in P(\) is 1 if G contains no 1-circuit. We can
show that the coefficient of A~ % ‘(that is, the coefficient of \, if G is con-
nected), is 0. This with Theorem 1, gives

THEOREM 2.

(=1'm;>0, i=0,1,...,R.

3. The Numbers a; and B;—Let a,B;...;v,0,¢ be the broken circuits
of G. In theorem 1, we picked out ¢ arcs from G so that the property 4
holds true, that is, « and B are not picked out,. . .v,6 and e are not picked
out. If we expand A4 by the logical expansion, «; is the number of logical
terms in the result containing 7 arcs. If we expand 4 into the second nor-
mal form (see a forthcoming paper by the author), §; is the number of
logical terms in this result containing ¢ arcs. m; is given in terms of the
numbers «; or B, by certain arithmetical formulas.

4. The Numbers m;; and f,;—To find m;; for a graph G, we count all
its subgraphs. But this is not necessary, for it is sufficient to count only
the non-separable subgraphs.

THEOREM 3. my; is a polynomial in the numbers Ny, Ne, ..., of non-
separable subgraphs of certain types in G. The same 1s, therefore, true of m;.

For example, if G contains no 1- or 2-circuits, and Ne;, N3 are the number
of triangles and quadrilaterals in G, then

man = (E — 3)Na + Na.

Now let m;; be the coefficient of x'y’ in a polynomial Q, of which the
constant term is mp = 1. Thus Q = 1 4+ Q’. Expand the logarithm of
this polynomial as a power series in x and y. Let the coefficient of x'y’
in this series be f;;. Then f;; equals m,; plus a polynomial in my, & < 1,
! £ j, containing no constant or linear term, and thus m,; equals a similar
expression in f;. Also, from Theorem 3 we see that f;; is a polynomial in
the numbers N;, Ne, . ... ' .
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Let G = G’ + G’ be the graph containing G’ and G’ as separate pieces.
From the definition of m;;, we find that

my; = % Mg Mi_p i1
THEOREM 4.
fi = fs + 15
THEOREM 5. Let Ty, ..., T, be types of non-separable subgraphs, and

let p be any positive number. Then we can find a set of numbers Ny, ...,
N,, each N; > 0, such that given any set of numbers ny, ..., 1,0 < n; < p,
there exists a graph containing N; + n; subgraphs of type T;,i =1, ..., q.

From the last two theorems we can deduce the following:

THEOREM 6. Consider the expression for m; as a polynomial in the
numbers Ny, Ny, ..., of non-separable subgraphs of certain types of G;. f;; is
exactly the linear terms of this polynomsial. .

Thus if we can find the linear terms of the polynom1a1 we can, by a fixed
arithmetical transformation, find the whole of m,;.

As f;;is linear, it has the form

f,j = 61N1 + CzNz + e

Is it difficult to find the coefficients ¢y, ¢s, ...? If Ni_;;, is the number
of k-circuits in G, the author has found the corresponding coefficients
¢x—1,1 for all the numbers f;,, the most interesting set. These coefficients
turned out to be quite simple; it would be very worthwhile to find still
more coefficients for fj. _

A fundamental problem of the theory is the following: When do a set
of numbers m,; represent a graph? In 2 we found a relation holding be-
tween the m;;.

THEOREM 7. There exists no other polynomial relation between the m,;,
true for all graphs.
However, there exist many inequalities, for instance, those induced by
“ theorem 2. The great difficulty of the problem is now apparent.
5. Relation to the 4-Color Map Problem.
THEOREM 8. Suppose G is a planar graph, and G’ is its dual. Then

’
Mmi; = MN—j, R—i-

PROPOSITION.  Let m,; be the numbers for G. If m;; = my_j r_; are the
numbers for some graph G', then G is planar, and G’ is its dual.

This proposition, though not proved, seems very likely true. If so, we
have a new statement of the 4-color map problem:

Is it true that if m,; are any set of numbers such that both they and the
numbers my _; g—; are the numbers of graphs G and G’ (R and N being the
rank and nullity of G), then
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(=D m 7 > 02
ij

More generally, this study is meant to throw some light on the nature of
the numbers m,;, which may in time lead to solutions of problems such as
the 4-color problem.

! Presented to the American Mathematical Society, Oct. 25, 1930.
2 Birkhoff, G. D., Ann. Math., 2, 14, No. 1 (42-46).
3 See Whitney, H., Bull. Am. Math. Soc., Abstract No. 36-11-396.
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1. Introduction.—We shall give here an outline of the main results of a
research on non-separable and planar graphs. The methods used are en-

tirely of a combinatorial character; the concepts of rank and nullity play
a fundamental réle. The results will be given in detail in a later paper.

A graph G is composed of two sets of symbols: wvertices, a, b, ..., f, and
arcs, a(ab) (or simply ab), B(ac), ..., d(ef). A chain is a set of distinct
arcs and vertices, ab, bc, ..., de. A suspended chain is a chain containing

at least two arcs, of which no vertices are on other arcs but the first and
last vertices, which are each on at least two other arcs. A circuit is a set
of distinct arcs and vertices, ab, bc, ..., de, ea. A k-circuit is a circuit
containing k arcs. A subgraph H of G is a graph formed by dropping out
arcs from G. Let V, E, P be the number of vertices, arcs and connected
pieces in G. We define the rank R and the nullity (or cyclomatic number)
N by the equations

R =V-P,

N=E—-R=E-V+P.

2. Non-Separable Graphs.—G is called non-separable if it is connected,
and if there are no two graphs G; and G, each containing at least one arc,
which form G if a vertex of one is made to coalesce with a vertex of the
other. If G is not non-separable, it is separable. G is called cyclicly
connected if each pair of vertices is contained in a circuit in G.

THEOREM 1. Let G be a graph containing at least two arcs but no 1-circuit.
A mecessary and sufficient condition that G be non-separable is that G be
cyclicly connected.?

Suppose a connected part of G is separable. We then separate it at a



